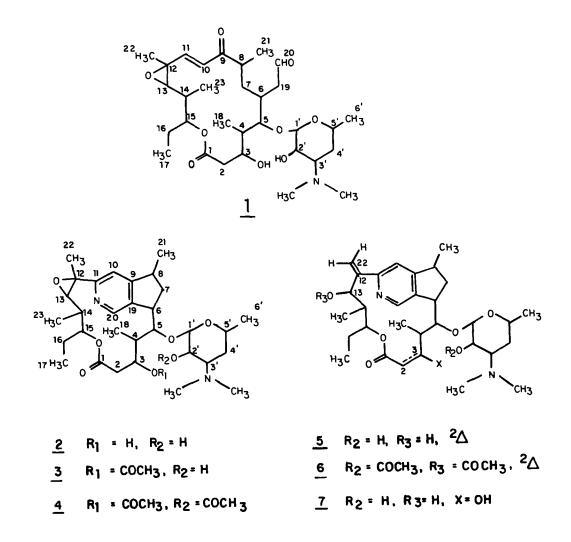
SCH 23831, A NOVEL MACROLIDE FROM MICROMONOSPORA ROSARIA

Mohindar S. Puar*, R. Brambilla, P. Bartner, D. Schumacher and R.S. Jaret

> Research Division, Schering-Plough Corporation, Bloomfield, New Jersey, 07003, U.S.A.

A novel macrolide elaborated by <u>Micromonospora rosaria</u>, SCH 23831, was assigned structure <u>2</u> on the basis of spectroscopic data. Several derivatives are also discussed.

Rosaramicin [‡], <u>1</u>, whose structure and biosynthesis have been the subject of previous investigations, ^{1,2} is a 16-membered macrolide antibiotic elaborated by <u>Micromonospora rosaria</u>³. From its earlier production batches, a new related component of the fermentation was isolated. We report here the structure of this unique macrolide by-product, Sch 23831, compound <u>2</u>.


Compound <u>2</u> $(C_{31}H_{48}N_2O_7, m/e = 560.3454)^4$ is basic in nature (pKa=8.6); $\lambda \max 229 nm$ ($\varepsilon = 8800$); $\nu \max$ (CHCl₃) (cm⁻¹) 3480(m,OH), 2980(s,CH₂), 1699(s,-OC=O), 1598 and 1552(w,-C=C-,-C=N), 1452(s,CH₂bend), 1175(s,-C-O-C=O); 1100(s,C-O-C); <u>PMR</u> $(CD_3)_2CO$ δ 0.85(t,7.0,CH₃), 0.98 (d,6.5,CH₃), 1.11 (d,6.5,CH₃), 1.28(d,6.5,2CH₃ groups), 1.79 (s,CH₃), 2.32 (s,N(CH₃)₂), 4.30 (d,7.5.CH(0)O), 4.80 (m,8.0,7.5,3.0,CHOCO), 7.02 (s,W³₂=3.0 Hz,=CH) and 8.45 (s,W³₂=2.5 Hz,=CH) The CMR spectrum in CDCl₃ showed the presence of eight methyl carbons at δ 8.5, 9.4, 14.8, 16.1, 18.3, 21.3 and 40.3 (N(CH₃)₂), four methylene carbons at δ 25.9, 28.9, 38.1 and 41.1, twelve methine carbons at δ 35.4, 36.8, 42.1, 49.6, 65.6, 67.4, 69.3, 70.7, 72.1, 80.3 and 104.1, two olefinic (=CH) carbons at δ 111.8 and 144.6 and five quarternary carbons at δ 62.5, 138.4, 160.0, 161.9 and 175.5 (OC=O). In the mass spectrum the major fragment ions were 560(M⁺), 432 (C₂₃H₃₂NO₄-OCHOH)⁺, 403 (C₂₃H₃₂NO₄-OH)⁺, 386 (C₂₃H₃₂NO₄)⁺ with additional fragments at 316, 300 and 298. The definition of the composition of the sugar, desosamine (C₈H₁₆NO₃, m/e [‡] It is also known as Sch 14947, 67-694 and Rosamicin. 174.1144), $(C_8H_{16}NO_2, m/e\ 158.1183, base peak)$, 116 $(C_5H_{10}NO_2)^+$ and 98 $(C_6H_{12}N)^+$ defined the aglycone moiety as having one nitrogen. The comparison of the PMR data of <u>2</u> with that of <u>1</u> indicated the absence of the aldehydic group and the olefinic protons of the enone system. In addition the CH₃ singlet attributed to C_{22} in <u>1</u> was shifted downfield by 0.3 ppm.

Similar comparison of the CMR data indicated that the carbons of rosaramicin at $^{\delta}$ 200.3 (C₉), 202.9 (C₂₀), 122.8 (C₁₀), 150.9 (C₁₁) and 43.9 (C₁₉) were missing and were recognized as new peaks at $^{\delta}$ 111.8 (=CH), 144.6 (=CH), 138.4 (C*), 160.0 (C*) in the new compound. The chemical shifts of the carbon atoms due to the desosamine sugar were identical in both compounds.⁵ Nonaqueous titration indicated two curves in agreement with two types of basic nitrogen atoms. The pKa and the UV data suggested a pyridine type molety. On the basis of the above data⁶, structure <u>2</u> is proposed for the new compound.

In the PMR, the decoupling at $\delta 8.45$ (H₂₀) transformed the $\delta 7.02$ (H₁₀) resonance to a doublet (J=1.0 Hz), whereas, the same experiment at $\delta 7.02$ sharpened the $\delta 8.45$ resonance. Irradiation at $\delta 3.22$ (C-5'H and the CH region) collapsed the methyl doublet (2CH₃ groups, 21CH₃ and 6'CH₃) at $\delta 1.28$ into a singlet, eliminated the long-range coupling to $\delta 8.41$ (N=CH) and 7.02 (=CH) resonances, and made possible the interpretation of residual coupling (J=1.0 Hz) between H₁₀ and H₂₀, consistent with the presence of para interactions observed in substituted pyridines. Irradiation at $\delta 1.28$ in a degassed sample resulted in approximately 15% N.O.E. between the secondary methyl and the $\delta 7.02$ resonance.

The protonation of pyridine nitrogen induces chemical shift changes of -7.8, +5.1 and +12.4 ppm at the α -, β - and γ - positions, respectively⁷. CMR data on protonation of <u>2</u> in CDCl₃-TFA resulted in chemical shift changes of -7.6 and -3.5 for the α -carbons 20 and 11, +4.9 for the β -carbons 10 and 19 and +11.8 for the γ carbon 9. These chemical shift changes are in complete agreement with the presence of pyridine ring in <u>2</u>.

Acetylation of $\underline{2}$ gave a diacetate, $\underline{4}$, which, after selective hydrolysis, resulted in a monoacetate, $\underline{3}$. NMR (1 H and 13 C) and mass spectral data were consistent with the assigned structures. The acetylation of $\underline{2}$ caused a downfield shift of H₃ under the methine protons envelope. The chemical shift of H₃ is upfield because of the strong shielding influence of the aromaticity of the pyridine ring. However, the elimination of the intramolecular hydro-

gen-bond between 3-OH and 1-CO groups resulted in an upfield shift (~5 ppm) of the lactone C=O (δ 170.6) in <u>3</u> and <u>4</u>⁸.

Attempted dehydration of $\underline{2}$ via mesylate, $\underline{4a}$ ($R_1 = SO_2CH_3$, $R_2 = COCH_3$), resulted not only in the creation of a double bond at C-2,3 but also generation of an exocyclic double bond. PMR suggested the presence of protons at δ 5.33 and 5.70 (2H,=CH₂) with concurrent loss of the δ 1.80 methyl group (22-CH₃) and additional vinylic protons at δ 5.04 (dd,16.0,2.0) and 6.25 (dd, 16.0,4.5) assigned to -CH=CH-CH(CH₃) molety. CMR confirmed the presence of additional carbons; δ 165.3 (OCO, now shifted upfield), 117.8 (2,=CH), 146.1 (3,=CH), 145.5 (12,C) and 116.7 (22, =CH₂). These results are consistent with structure $\frac{5}{2}$ ($C_{31}H_{46}N_2O_6$, m/e = 542.3351) for the dehydration product. The presence of two OH groups at positions 13 (δ 75.9) and 2' was confirmed by the formation of diacetate, $\frac{6}{2}$ (m/e 626) and supported by PMR decoupling experiments. Another attempt ⁹ to dehydrate <u>2</u> in refluxing pyridine resulted in a compound with the same molecular ion ($C_{31}H_{48}N_2O_7$, m/e 560.3508). However, the PMR spectrum indicated the loss of 22CH₃ group at δ 1.80 and the presence of an exocyclic methylene group at δ 5.40 and 5.85 (=CH₂). The spectrum also lacked the presence of another double bond. Structure <u>7</u> was assigned to this product.

In Vitro MICs indicate that SCH 23831 has weak gram positive activity.¹⁰

The authors wish to thank Dr. A.K. Ganguly for his valuable suggestions.

REFERENCES

- 1. H. Reimann and R.S. Jaret, Chem. Comm., 1270 1972 (1972).
- A.K. Ganguly, B.K. Lee, R. Brambilla, R. Condon and O. Sarre, <u>J. Antibiot. 29</u>(9), 976 (1976).
- G.H. Wagman, J.A. Waitz, M. Marquez, A. Murawski, E.M. Oden, R.T. Testa and M.J. Weinstein, <u>J. Antibiot.</u>, <u>25</u> 641 (1972).
- 4. Other physical data: chemical analysis:found (%) C=65.67, H=8.95, N=4.64; calcd. (%) C=66.40, H=8.63, N=5.00; UV ($_{\lambda \max}$ CH₃OH)=229 (ϵ =8800), 269 (ϵ =2350), 278 (ϵ =2100); Rot [α]²⁵= -60.2° in C₂H₅OH.
- 5. J.G. Nourse and J.D. Roberts, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 4584 (1975).
- 6. Proton and C-13 NMR data were obtained by utilizing a Varian XL-100-15 Spectrometer. Proton NMR were obtained in (CD₃)₂CO and CDC1₃, whereas, C-13 data (both fully decoupled and off-resonance) were obtained in CDC1₃. The present data, along with the structures of other minor macrolides from rosaramicin fermentations, will be reported at a later date.
- G.C. Levy and G.L. Nelson, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists John Wiley & Sons, 1972, p. 140.
- S. Omura, A. Nakagawa, A. Neszmelyi, S.D. Gero, A.M. Sepulchre, F. Pirion and G. Lukacs, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 4001 (1975).
- Under these conditions, <u>1</u> was quantitatively transformed to des-epoxy derivative (unpublished results).
- 10. Since no nitrogen source was used during the isolation and purification of this compound the possibility that it is an artifact is very remote.

(Received in USA 19 March 1979)